
TensorFlow PhaseSpace
Documentation

Release 0.0.0

Albert Puig Navarro

Oct 13, 2019

Contents

1 Why? 3

2 Installing 5

3 How to use 7

4 Physics validation 11

5 Contributing 13

Python Module Index 25

Index 27

i

ii

TensorFlow PhaseSpace Documentation, Release 0.0.0

Python implementation of the Raubold and Lynch method for n-body events using TensorFlow as a backend.

The code is based on the GENBOD function (W515 from CERNLIB), documented in [1] and tries to follow it as
closely as possible.

Detailed documentation, including the API, can be found in https://phasespace.readthedocs.io. Don’t hesitate to join
our gitter channel for questions and comments.

If you use phasespace in a scientific publication we would appreciate citations to the zenodo publication:

@article{phasespace-2019,
title={phasespace: n-body phase space generation in Python},
DOI={10.5281/zenodo.2926058},
publisher={Zenodo},
author={Albert Puig and Jonas Eschle},
year={2019},
month={Mar}}

Free software: BSD-3-Clause.

[1] F. James, Monte Carlo Phase Space, CERN 68-15 (1968)

Contents 1

https://doi.org/10.5281/zenodo.2591993
https://pypi.org/project/phasespace/
https://pypi.org/project/phasespace/
https://travis-ci.org/zfit/phasespace
https://coveralls.io/github/zfit/phasespace?branch=master
https://phasespace.readthedocs.io/en/latest/?badge=stable
https://gitter.im/zfit/phasespace?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
https://phasespace.readthedocs.io
https://gitter.im/zfit/phasespace
https://doi.org/10.5281/zenodo.2591993

TensorFlow PhaseSpace Documentation, Release 0.0.0

2 Contents

CHAPTER 1

Why?

Lately, data analysis in High Energy Physics (HEP), traditionally performed within the ROOT ecosystem, has been
moving more and more towards Python. The possibility of carrying out purely Python-based analyses has become
real thanks to the development of many open source Python packages, which have allowed to replace most ROOT
functionality with Python-based packages.

One of the aspects where this is still not possible is in the random generation of n-body phase space events, which are
widely used in the field, for example to study kinematics of the particle decays of interest, or to perform importance
sampling in the case of complex amplitude models. This has been traditionally done with the TGenPhaseSpace class,
which is based of the GENBOD function of the CERNLIB FORTRAN libraries and which requires a full working
ROOT installation.

This package aims to address this issue by providing a TensorFlow-based implementation of such a function to generate
n-body decays without requiring a ROOT installation. Additionally, an oft-needed functionality to generate complex
decay chains, not included in TGenPhaseSpace, is also offered, leaving room for decaying resonances (which don’t
have a fixed mass, but can be seen as a broad peak).

3

https://root.cern.ch
https://root.cern.ch/doc/master/classTGenPhaseSpace.html

TensorFlow PhaseSpace Documentation, Release 0.0.0

4 Chapter 1. Why?

CHAPTER 2

Installing

To install phasespace, run this command in your terminal:

$ pip install phasespace

This is the preferred method to install phasespace, as it will always install the most recent stable release.

For the newest development version, which may be unstable, you can install the version from git with

$ pip install git+https://github.com/zfit/phasespace

5

TensorFlow PhaseSpace Documentation, Release 0.0.0

6 Chapter 2. Installing

CHAPTER 3

How to use

The generation of simple n-body decays can be done using the nbody_decay shortcut to create a decay chain with
a very simple interface: one needs to pass the mass of the top particle and the masses of the children particle as a list,
optionally giving the names of the particles. Then, the generate method can be used to produce the desired sample.
For example, to generate 𝐵0 → 𝐾𝜋, we would do:

import phasespace

B0_MASS = 5279.58
PION_MASS = 139.57018
KAON_MASS = 493.677

weights, particles = phasespace.nbody_decay(B0_MASS,
[PION_MASS, KAON_MASS]).generate(n_

→˓events=1000)

This returns a numpy array of 1000 elements in the case of weights and a list of n particles (2) arrays of (1000,
4) shape, where each of the 4-dimensions corresponds to one of the components of the generated Lorentz 4-vector. All
particles are generated in the rest frame of the top particle; boosting to a certain momentum (or list of momenta) can
be achieved by passing the momenta to the boost_to argument.

Behind the scenes, this function runs the TensorFlow graph, but no caching of the graph or reusing the session is
performed. If we want to get the graph to avoid an immediate execution, we can use the generate_tensor method.
Then, to produce the equivalent result to the previous example, we simply do:

import tensorflow as tf

with tf.Session() as sess:
weights, particles = phasespace.nbody_decay(B0_MASS,

[PION_MASS, KAON_MASS]).generate_
→˓tensor(n_events=1000)

weights, particles = sess.run([weights, particles])

Sequential decays can be handled with the GenParticle class (used internally by generate) and its
set_children method. As an example, to build the 𝐵0 → 𝐾*𝛾 decay in which 𝐾* → 𝐾𝜋, we would write:

7

TensorFlow PhaseSpace Documentation, Release 0.0.0

from phasespace import GenParticle

B0_MASS = 5279.58
KSTARZ_MASS = 895.81
PION_MASS = 139.57018
KAON_MASS = 493.677

pion = GenParticle('pi+', PION_MASS)
kaon = GenParticle('K+', KAON_MASS)
kstar = GenParticle('K*', KSTARZ_MASS).set_children(pion, kaon)
gamma = GenParticle('gamma', 0)
bz = GenParticle('B0', B0_MASS).set_children(kstar, gamma)

weights, particles = bz.generate(n_events=1000)

Where we have used the fact that set_children returns the parent particle. In this case, particles is a dict
with the particle names as keys:

>>> particles
{'K*': array([[1732.79325872, -1632.88873127, 950.85807735, 2715.78804872],

[-1633.95329448, 239.88921123, -1961.0402768 , 2715.78804872],
[407.15613764, -2236.6569286 , -1185.16616251, 2715.78804872],
...,
[1091.64603395, -1301.78721269, 1920.07503991, 2715.78804872],
[-517.3125083 , 1901.39296899, 1640.15905194, 2715.78804872],
[656.56413668, -804.76922982, 2343.99214816, 2715.78804872]]),

'K+': array([[750.08077976, -547.22569019, 224.6920906 , 1075.30490935],
[-1499.90049089, 289.19714633, -1935.27960292, 2514.43047106],
[97.64746732, -1236.68112923, -381.09526192, 1388.47607911],
...,
[508.66157459, -917.93523639, 1474.7064148 , 1876.11771642],
[-212.28646168, 540.26381432, 610.86656669, 976.63988936],
[177.16656666, -535.98777569, 946.12636904, 1207.28744488]]),

'gamma': array([[-1732.79325872, 1632.88873127, -950.85807735, 2563.79195128],
[1633.95329448, -239.88921123, 1961.0402768 , 2563.79195128],
[-407.15613764, 2236.6569286 , 1185.16616251, 2563.79195128],
...,
[-1091.64603395, 1301.78721269, -1920.07503991, 2563.79195128],
[517.3125083 , -1901.39296899, -1640.15905194, 2563.79195128],
[-656.56413668, 804.76922982, -2343.99214816, 2563.79195128]]),

'pi+': array([[982.71247896, -1085.66304109, 726.16598675, 1640.48313937],
[-134.0528036 , -49.3079351 , -25.76067389, 201.35757766],
[309.50867032, -999.97579937, -804.0709006 , 1327.31196961],
...,
[582.98445936, -383.85197629, 445.36862511, 839.6703323],
[-305.02604662, 1361.12915468, 1029.29248526, 1739.14815935],
[479.39757002, -268.78145413, 1397.86577911, 1508.50060384]])}

The GenParticle class is able to cache the graphs so it is possible to generate in a loop without overhead:

for i in range(10):
weights, particles = bz.generate(n_events=1000)
...
(do something with weights and particles)
...

This way of generating is recommended in the case of large samples, as it allows to benefit from parallelisation while
at the same time keep the memory usage low.

8 Chapter 3. How to use

TensorFlow PhaseSpace Documentation, Release 0.0.0

If we want to operate with the TensorFlow graph instead, we can use the generate_tensor method of GenParticle,
which has the same signature as generate.

More examples can be found in the tests folder and in the documentation.

9

https://phasespace.readthedocs.io/en/latest/usage.html

TensorFlow PhaseSpace Documentation, Release 0.0.0

10 Chapter 3. How to use

CHAPTER 4

Physics validation

Physics validation is performed continuously in the included tests (tests/test_physics.py), run through
Travis CI. This validation is performed at two levels:

• In simple n-body decays, the results of phasespace are checked against TGenPhaseSpace.

• For sequential decays, the results of phasespace are checked against RapidSim, a “fast Monte Carlo generator
for simulation of heavy-quark hadron decays”. In the case of resonances, differences are expected because
our tests don’t include proper modelling of their mass shape, as it would require the introduction of further
dependencies. However, the results of the comparison can be expected visually.

The results of all physics validation performed by the tests_physics.py test are written in tests/plots.

11

https://github.com/gcowan/RapidSim/

TensorFlow PhaseSpace Documentation, Release 0.0.0

12 Chapter 4. Physics validation

CHAPTER 5

Contributing

Contributions are always welcome, please have a look at the Contributing guide.

5.1 Credits

5.1.1 Development Lead

• Albert Puig Navarro <albert.puig@cern.ch>

5.1.2 Core Developers

• Jonas Eschle <jonas.eschle@cern.ch>

5.1.3 Contributors

None yet. Why not be the first?

5.2 Table of Contents

5.2.1 Usage

The base of phasespace is the GenParticle object. This object, which represents a particle, either stable or
decaying, has only one mandatory argument, its name.

In most cases (except for the top particle of a decay), one wants to also specify its mass, which can be either a number
or tf.constant, or a function. Functions are used to specify the mass of particles such as resonances, which are
not fixed but vary according to a broad distribution. These mass functions get three arguments, and must return a
TensorFlow Tensor:

13

CONTRIBUTING.rst
mailto:albert.puig@cern.ch
mailto:jonas.eschle@cern.ch

TensorFlow PhaseSpace Documentation, Release 0.0.0

• The minimum mass allowed by the decay chain, which will be of shape (n_events,).

• The maximum mass available, which will be of shape (n_events,).

• The number of events to generate.

This function signature allows to handle threshold effects cleanly, giving enough information to produce kinematically
allowed decays (NB: phasespace will throw an error if a kinematically forbidden decay is requested).

With these considerations in mind, one can build a decay chain by using the set_children method of the
GenParticle class (which returns the class itself). As an example, to build the 𝐵0 → 𝐾*𝛾 decay in which
𝐾* → 𝐾𝜋 with a fixed mass, we would write:

from phasespace import GenParticle

B0_MASS = 5279.58
KSTARZ_MASS = 895.81
PION_MASS = 139.57018
KAON_MASS = 493.677

pion = GenParticle('pi+', PION_MASS)
kaon = GenParticle('K+', KAON_MASS)
kstar = GenParticle('K*', KSTARZ_MASS).set_children(pion, kaon)
gamma = GenParticle('gamma', 0)
bz = GenParticle('B0', B0_MASS).set_children(kstar, gamma)

Phasespace events can be generated using the generate method, which gets the number of events to generate as
input. The method returns:

• The normalized weights of each event, as an array of dimension (n_events,).

• The 4-momenta of the generated particles as values of a dictionary with the particle name as key. These momenta
are expressed as arrays of dimension (n_events, 4).

N_EVENTS = 1000

weights, particles = bz.generate(n_events=N_EVENTS)

The generate method directly produces numpy arrays; for advanced usage, generate_tensor returns the same
objects with the numpy arrays replaced by tf.Tensor of the same shape. So one can do, equivalent to the previous
example:

import tensorflow as tf

with tf.Session() as sess:
weights, particles = sess.run(bz.generate_tensor(n_events=N_EVENTS))

In both cases, the particles are generated in the rest frame of the top particle. To produce them at a given mo-
mentum of the top particle, one can pass these momenta with the boost_to argument in both generate and
~‘tf.Tensor‘. This latter approach can be useful if the momentum of the top particle is generated according to some
distribution, for example the kinematics of the LHC (see test_kstargamma_kstarnonresonant_lhc and
test_k1gamma_kstarnonresonant_lhc in tests/test_physics.py to see how this could be done).

Additionally, it is possible to obtain the unnormalized weights by using the generate_unnormalized flag in
generate and generate_tensor. In this case, the method returns the unnormalized weights, the per-event
maximum weight and the particle dictionary.

>>> particles
{'K*': array([[1732.79325872, -1632.88873127, 950.85807735, 2715.78804872],

(continues on next page)

14 Chapter 5. Contributing

TensorFlow PhaseSpace Documentation, Release 0.0.0

(continued from previous page)

[-1633.95329448, 239.88921123, -1961.0402768 , 2715.78804872],
[407.15613764, -2236.6569286 , -1185.16616251, 2715.78804872],
...,
[1091.64603395, -1301.78721269, 1920.07503991, 2715.78804872],
[-517.3125083 , 1901.39296899, 1640.15905194, 2715.78804872],
[656.56413668, -804.76922982, 2343.99214816, 2715.78804872]]),

'K+': array([[750.08077976, -547.22569019, 224.6920906 , 1075.30490935],
[-1499.90049089, 289.19714633, -1935.27960292, 2514.43047106],
[97.64746732, -1236.68112923, -381.09526192, 1388.47607911],
...,
[508.66157459, -917.93523639, 1474.7064148 , 1876.11771642],
[-212.28646168, 540.26381432, 610.86656669, 976.63988936],
[177.16656666, -535.98777569, 946.12636904, 1207.28744488]]),

'gamma': array([[-1732.79325872, 1632.88873127, -950.85807735, 2563.79195128],
[1633.95329448, -239.88921123, 1961.0402768 , 2563.79195128],
[-407.15613764, 2236.6569286 , 1185.16616251, 2563.79195128],
...,
[-1091.64603395, 1301.78721269, -1920.07503991, 2563.79195128],
[517.3125083 , -1901.39296899, -1640.15905194, 2563.79195128],
[-656.56413668, 804.76922982, -2343.99214816, 2563.79195128]]),

'pi+': array([[982.71247896, -1085.66304109, 726.16598675, 1640.48313937],
[-134.0528036 , -49.3079351 , -25.76067389, 201.35757766],
[309.50867032, -999.97579937, -804.0709006 , 1327.31196961],
...,
[582.98445936, -383.85197629, 445.36862511, 839.6703323],
[-305.02604662, 1361.12915468, 1029.29248526, 1739.14815935],
[479.39757002, -268.78145413, 1397.86577911, 1508.50060384]])}

It is worth noting that the graph generation is cached even when using generate, so iterative generation can be
performed using normal python loops without loss in performance:

for i in range(10):
weights, particles = bz.generate(n_events=1000)
...
(do something with weights and particles)
...

To generate the mass of a resonance, we need to give a function as its mass instead of a floating number. This
function should take as input the per-event lower mass allowed, per-event upper mass allowed and the number of
events, and should return a ~‘tf.Tensor‘ with the generated masses and shape (nevents,). Well suited for this task are
the TensorFlow Probability distributions or, for more customized mass shapes, the zfit pdfs (currently an experimental
feature is needed, contact the ‘zfit developers <https://github.com/zfit/zfit>‘_ to learn more).

Following with the same example as above, and approximating the resonance shape by a gaussian, we could write the
𝐵0 → 𝐾*𝛾 decay chain as (more details can be found in tests/helpers/decays.py):

import tensorflow as tf
import tensorflow_probability as tfp
from phasespace import GenParticle

KSTARZ_MASS = 895.81
KSTARZ_WIDTH = 47.4

def kstar_mass(min_mass, max_mass, n_events):
min_mass = tf.cast(min_mass, tf.float64)
max_mass = tf.cast(max_mass, tf.float64)

(continues on next page)

5.2. Table of Contents 15

https://www.tensorflow.org/probability/api_docs/python/tfp/distributions
https://zfit.github.io/zfit/model.html#tensor-sampling

TensorFlow PhaseSpace Documentation, Release 0.0.0

(continued from previous page)

kstar_width_cast = tf.cast(KSTARZ_WIDTH, tf.float64)
kstar_mass_cast = tf.cast(KSTARZ_MASS, dtype=tf.float64)

kstar_mass = tf.broadcast_to(kstar_mass_cast, shape=(n_events,))
if kstar_width > 0:

kstar_mass = tfp.distributions.TruncatedNormal(loc=kstar_mass,
scale=kstar_width_cast,
low=min_mass,
high=max_mass).sample()

return kstar_mass

bz = GenParticle('B0', B0_MASS).set_children(GenParticle('K*0', mass=kstar_mass)
.set_children(GenParticle('K+',

→˓mass=KAON_MASS),
GenParticle('pi-',

→˓mass=PION_MASS)),
GenParticle('gamma', mass=0.0))

Shortcut for simple decays

The generation of simple n-body decay chains can be done using the nbody_decay function of phasespace,
which takes

• The mass of the top particle.

• The mass of children particles as a list.

• The name of the top particle (optional).

• The names of the children particles (optional).

If the names are not given, top and p_{i} are assigned. For example, to generate 𝐵0 → 𝐾𝜋, one would do:

import phasespace

N_EVENTS = 1000

B0_MASS = 5279.58
PION_MASS = 139.57018
KAON_MASS = 493.677

decay = phasespace.nbody_decay(B0_MASS, [PION_MASS, KAON_MASS],
top_name="B0", names=["pi", "K"])

weights, particles = decay.generate(n_events=N_EVENTS)

In this example, decay is simply a GenParticle with the corresponding children.

5.2.2 phasespace package

phasespace.phasespace module

Implementation of the Raubold and Lynch method to generate n-body events.

The code is based on the GENBOD function (W515 from CERNLIB), documented in

F. James, Monte Carlo Phase Space, CERN 68-15 (1968)

16 Chapter 5. Contributing

TensorFlow PhaseSpace Documentation, Release 0.0.0

class phasespace.phasespace.GenParticle(name: str, mass: Union[Callable, int, float])
Bases: object

Representation of a particle.

Instances of this class can be combined with each other to build decay chains, which can then be used to generate
phase space events through the generate or generate_tensor method.

A GenParticle must have

• a name, which is ensured not to clash with any others in the decay chain.

• a mass, which can be either a number or a function to generate it according to a certain distri-
bution. The returned ~‘tf.Tensor‘ needs to have shape (nevents,). In this case, the particle is
not considered as having a fixed mass and the has_fixed_mass method will return False.

It may also have:

• Children, ie, decay products, which are also GenParticle instances.

Parameters

• name (str) – Name of the particle.

• mass (float, Tensor`, callable) – Mass of the particle. If it’s a float, it get
converted to a tf.constant.

generate(n_events: int, boost_to=None, normalize_weights: bool = True)
Generate normalized n-body phase space as numpy arrays.

Events are generated in the rest frame of the particle, unless boost_to is given.

Note: In this method, the event weights are returned normalized to their maximum.

Parameters

• n_events (int) – Number of events to generate.

• boost_to (optional) – Momentum vector of shape (x, 4), where x is optional, to
where the resulting events will be boosted. If not specified, events are generated in the rest
frame of the particle.

• normalize_weights (bool, optional) – Normalize the event weight to its max?

Returns

Result of the generation, which varies with the value of normalize_weights:

• If True, the tuple elements are the normalized event weights as an array of shape

(n_events,), and the momenta generated particles as a dictionary of arrays of shape (4,
n_events) with particle names as keys.

• If False, the tuple weights are the unnormalized event weights as an array of shape

(n_events,), the maximum per-event weights as an array of shape (n_events,) and
the momenta generated particles as a dictionary of arrays of shape (4, n_events) with
particle names as keys.

Return type tuple

5.2. Table of Contents 17

TensorFlow PhaseSpace Documentation, Release 0.0.0

Raise: tf.errors.InvalidArgumentError: If the the decay is kinematically forbidden. ValueError: If
n_events and the size of boost_to don’t match. See GenParticle.generate_unnormalized.

generate_tensor(n_events: Union[int, tensorflow.python.framework.ops.Tensor,
tensorflow.python.ops.variables.VariableV1], boost_to: Op-
tional[tensorflow.python.framework.ops.Tensor] = None, normalize_weights:
bool = True) → Tuple[tensorflow.python.framework.ops.Tensor, Dict[str,
tensorflow.python.framework.ops.Tensor]]

Generate normalized n-body phase space as tensorflow tensors.

Events are generated in the rest frame of the particle, unless boost_to is given.

Note: In this method, the event weights are returned normalized to their maximum.

Parameters

• n_events (int) – Number of events to generate.

• boost_to (optional) – Momentum vector of shape (x, 4), where x is optional, to
where the resulting events will be boosted. If not specified, events are generated in the rest
frame of the particle.

• normalize_weights (bool, optional) – Normalize the event weight to its max?

Returns

Result of the generation, which varies with the value of normalize_weights:

• If True, the tuple elements are the normalized event weights as a tensor of shape

(n_events,), and the momenta generated particles as a dictionary of tensors of shape (4,
n_events) with particle names as keys.

• If False, the tuple weights are the unnormalized event weights as a tensor of shape

(n_events,), the maximum per-event weights as a tensor of shape (n_events,) and
the momenta generated particles as a dictionary of tensors of shape (4, n_events) with
particle names as keys.

Return type tuple

Raise: tf.errors.InvalidArgumentError: If the the decay is kinematically forbidden. ValueError: If
n_events and the size of boost_to don’t match. See GenParticle.generate_unnormalized.

get_mass(min_mass: tensorflow.python.framework.ops.Tensor = None,
max_mass: tensorflow.python.framework.ops.Tensor = None,
n_events: Union[tensorflow.python.framework.ops.Tensor, tensor-
flow.python.ops.variables.VariableV1] = None)→ tensorflow.python.framework.ops.Tensor

Get the particle mass.

If the particle is resonant, the mass function will be called with the min_mass, max_mass and n_events
parameters.

Parameters

• min_mass (tensor) – Lower mass range. Defaults to None, which is only valid in the
case of fixed mass.

• max_mass (tensor) – Upper mass range. Defaults to None, which is only valid in the
case of fixed mass.

18 Chapter 5. Contributing

TensorFlow PhaseSpace Documentation, Release 0.0.0

• () (n_events) – Number of events to produce. Has to be specified if the particle is
resonant.

Returns Mass of the particles, either a scalar or shape (nevents,)

Return type Tensor‘

Raise: ValueError: If the mass is requested and has not been set.

has_children
Does the particle have children?

Type bool

has_fixed_mass
Is the mass a callable function?

Type bool

has_grandchildren
Does the particle have grandchildren?

Type bool

set_children(*children)
Assign children.

Parameters children (GenParticle) – Two or more children to assign to the current par-
ticle.

Returns self

Raise: ValueError: If there is an inconsistency in the parent/children relationship, ie, if children were
already set, if their parent was or if less than two children were given. KeyError: If there is a particle
name clash.

class phasespace.phasespace.Particle
Bases: object

Deprecated Particle class.

Renamed to GenParticle.

phasespace.phasespace.generate_decay(*args, **kwargs)
Deprecated.

phasespace.phasespace.nbody_decay(mass_top: float, masses: list, top_name: str = ”, names: list
= None)

Shortcut to build an n-body decay of a GenParticle.

If the particle names are not given, the top particle is called ‘top’ and the children ‘p_{i}’, where i corresponds
to their position in the masses sequence.

Parameters

• mass_top (tensor, list) – Mass of the top particle. Can be a list of 4-vectors.

• masses (list) – Masses of the child particles.

• name_top (str, optional) – Name of the top particle. If not given, the top particle
is named top.

• names (list, optional) – Names of the child particles. If not given, they are build as
‘p_{i}’, where i is given by their ordering in the masses list.

5.2. Table of Contents 19

TensorFlow PhaseSpace Documentation, Release 0.0.0

Returns Particle decay.

Return type GenParticle

Raise: ValueError: If the length of masses and names doesn’t match.

phasespace.phasespace.pdk(a, b, c)
Calculate the PDK (2-body phase space) function.

Based on Eq. (9.17) in CERN 68-15 (1968).

Parameters

• a (Tensor`) – 𝑀𝑖+1 in Eq. (9.17).

• b (Tensor`) – 𝑀𝑖 in Eq. (9.17).

• c (Tensor`) – 𝑚𝑖+1 in Eq. (9.17).

Returns ~‘tf.Tensor‘

phasespace.phasespace.process_list_to_tensor(lst)
Convert a list to a tensor.

The list is converted to a tensor and transposed to get the proper shape.

Note: If lst is a tensor, nothing is done to it other than convert it to tf.float64.

Parameters lst (list) – List to convert.

Returns ~‘tf.Tensor‘

phasespace.kinematics module

Basic kinematics.

phasespace.kinematics.beta(vector)
Calculate beta of a given 4-vector.

Parameters vector – Input Lorentz momentum vector.

phasespace.kinematics.boost_components(vector)
Get the boost components of a given 4-vector.

Parameters vector – Input Lorentz momentum vector.

phasespace.kinematics.lorentz_boost(vector, boostvector)
Perform Lorentz boost.

Parameters

• vector – 4-vector to be boosted

• boostvector – Boost vector. Can be either 3-vector or 4-vector, since only spatial com-
ponents are used.

phasespace.kinematics.lorentz_vector(space, time)
Make a Lorentz vector from spatial and time components.

Parameters

• space – 3-vector of spatial components.

20 Chapter 5. Contributing

TensorFlow PhaseSpace Documentation, Release 0.0.0

• time – Time component.

phasespace.kinematics.mass(vector)
Calculate mass scalar for Lorentz 4-momentum.

Parameters vector – Input Lorentz momentum vector.

phasespace.kinematics.metric_tensor()
Metric tensor for Lorentz space (constant).

phasespace.kinematics.scalar_product(vec1, vec2)
Calculate scalar product of two 3-vectors.

Parameters

• vec1 – First vector.

• vec2 – Second vector.

phasespace.kinematics.spatial_component(vector)
Extract spatial components of the input Lorentz vector.

Parameters vector – Input Lorentz vector (where indexes 0-2 are space, index 3 is time).

phasespace.kinematics.time_component(vector)
Extract time component of the input Lorentz vector.

Parameters vector – Input Lorentz vector (where indexes 0-2 are space, index 3 is time).

phasespace.kinematics.x_component(vector)
Extract spatial X component of the input Lorentz or 3-vector.

Parameters vector – Input vector.

phasespace.kinematics.y_component(vector)
Extract spatial Y component of the input Lorentz or 3-vector.

Parameters vector – Input vector.

phasespace.kinematics.z_component(vector)
Extract spatial Z component of the input Lorentz or 3-vector.

Parameters vector – Input vector.

5.2.3 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/zfit/phasespace/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.2. Table of Contents 21

https://github.com/zfit/phasespace/issues

TensorFlow PhaseSpace Documentation, Release 0.0.0

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

TensorFlow PhaseSpace could always use more documentation, whether as part of the official TensorFlow PhaseSpace
docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/zfit/phasespace/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up phasespace for local development.

1. Fork the phasespace repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/phasespace.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv phasespace
$ cd phasespace/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

22 Chapter 5. Contributing

https://github.com/zfit/phasespace/issues

TensorFlow PhaseSpace Documentation, Release 0.0.0

$ flake8 phasespace tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/zfit/
phasespace/pull_requests and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests (for example those in tests/test_generate.py):

$ pytest -k test_generate

Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

5.2.4 Credits

Development Lead

• Albert Puig Navarro <albert.puig@cern.ch>

Core Developers

• Jonas Eschle <jonas.eschle@cern.ch>

5.2. Table of Contents 23

https://travis-ci.org/zfit/phasespace/pull_requests
https://travis-ci.org/zfit/phasespace/pull_requests
mailto:albert.puig@cern.ch
mailto:jonas.eschle@cern.ch

TensorFlow PhaseSpace Documentation, Release 0.0.0

Contributors

None yet. Why not be the first?

5.2.5 Changelog

Develop

Major Features and Improvements

Behavioral changes

Bug fixes and small changes

Requirement changes

Thanks

1.0.4 (13-10-2019)

Major Features and Improvements

Release to conda-forge, thanks to Chris Burr

24 Chapter 5. Contributing

Python Module Index

p
phasespace.kinematics, 20
phasespace.phasespace, 16

25

TensorFlow PhaseSpace Documentation, Release 0.0.0

26 Python Module Index

Index

B
beta() (in module phasespace.kinematics), 20
boost_components() (in module phases-

pace.kinematics), 20

G
generate() (phasespace.phasespace.GenParticle

method), 17
generate_decay() (in module phases-

pace.phasespace), 19
generate_tensor() (phases-

pace.phasespace.GenParticle method), 18
GenParticle (class in phasespace.phasespace), 16
get_mass() (phasespace.phasespace.GenParticle

method), 18

H
has_children (phasespace.phasespace.GenParticle

attribute), 19
has_fixed_mass (phases-

pace.phasespace.GenParticle attribute),
19

has_grandchildren (phases-
pace.phasespace.GenParticle attribute),
19

L
lorentz_boost() (in module phases-

pace.kinematics), 20
lorentz_vector() (in module phases-

pace.kinematics), 20

M
mass() (in module phasespace.kinematics), 21
metric_tensor() (in module phases-

pace.kinematics), 21

N
nbody_decay() (in module phasespace.phasespace),

19

P
Particle (class in phasespace.phasespace), 19
pdk() (in module phasespace.phasespace), 20
phasespace.kinematics (module), 20
phasespace.phasespace (module), 16
process_list_to_tensor() (in module phases-

pace.phasespace), 20

S
scalar_product() (in module phases-

pace.kinematics), 21
set_children() (phases-

pace.phasespace.GenParticle method), 19
spatial_component() (in module phases-

pace.kinematics), 21

T
time_component() (in module phases-

pace.kinematics), 21

X
x_component() (in module phasespace.kinematics),

21

Y
y_component() (in module phasespace.kinematics),

21

Z
z_component() (in module phasespace.kinematics),

21

27

	Why?
	Installing
	How to use
	Physics validation
	Contributing
	Python Module Index
	Index

